Solve the equation cos2x-cosx=0cos2xcosx=0?

1 Answer
Apr 4, 2017

x=(2n+1)pix=(2n+1)π or x=2npi+-(2pi)/3x=2nπ±2π3, where nn is an integer

Explanation:

Using identity cos2x=2cos^2x-1cos2x=2cos2x1, cos2x-cosx=0cos2xcosx=0 can be written as

2cos^2x-cosx-1=02cos2xcosx1=0 and hence using quadratic formula

cosx=(-(-1)+-sqrt((-1)^2-4xx2xx(-1)))/(2xx2)cosx=(1)±(1)24×2×(1)2×2

=(1+-sqrt9)/4=1±94

=(1+-3)/4=1±34

=1=1 or -1/212

If cosx=1cosx=1, x=(2n+1)pix=(2n+1)π, where nn is an integer

and if cosx=-1/2cosx=12, x=2npi+-(2pi)/3x=2nπ±2π3, where nn is an integer