Question #92a25

2 Answers
Apr 3, 2017

x=0,pi/2,2pix=0,π2,2π

Explanation:

1-sinx=cosx1sinx=cosx

=>cosx+sinx=1cosx+sinx=1

=>1/sqrt2cosx+1/sqrt2sinx=1/sqrt212cosx+12sinx=12

=>cos(pi/4)cosx+sin(pi/4)sinx=cos(pi/4)cos(π4)cosx+sin(π4)sinx=cos(π4)

=>cos(x-pi/4)=cos(pi/4)=cos(-pi/4)=cos(2pi-pi/4)cos(xπ4)=cos(π4)=cos(π4)=cos(2ππ4)

So x-pi/4=pi/4xπ4=π4

=>x=pi/2x=π2

when

x-pi/4=-pi/4xπ4=π4

x=0x=0

Again

x-pi/4=2pi-pi/4xπ4=2ππ4

=>x=2pix=2π

Apr 4, 2017

x = 2kpix=2kπ
x = pi/2 + 2kpix=π2+2kπ

Explanation:

sin x + cos x = 1
Use trig identity:
sin x + cos x = sqrt2sin (x + pi/4)sinx+cosx=2sin(x+π4)
In this case:
sqrt2sin (x + pi/4) = 12sin(x+π4)=1
sin (x + pi/4) = 1/sqrt2 = sqrt2/2sin(x+π4)=12=22
Trig table and unit circle give 2 solutions -->
a. (x + pi/4) = pi/4 + 2kpi(x+π4)=π4+2kπ
x = 0 + 2kpix=0+2kπ, or x = 2kpix=2kπ
b. (x + pi/4) = pi - pi/4 + 2kpi = (3pi)/4 + 2kpi (x+π4)=ππ4+2kπ=3π4+2kπ
x = (3pi)/4 - pi/4 + 2kpi = pi/2 + 2kpix=3π4π4+2kπ=π2+2kπ