Solve the equation 6sec^2x+3tan^2x-9=06sec2x+3tan2x9=0 in the interval [0,2pi][0,2π]?

1 Answer
Mar 23, 2017

x={pi/6,(5pi)/6,(7pi)/6,(11pi)/6}x={π6,5π6,7π6,11π6}

Explanation:

In 6sec^2x+3tan^2x-9=06sec2x+3tan2x9=0 putting sec^2x=1+tan^2xsec2x=1+tan2x, we get

6(1+tan^2x)+3tan^2x-9=06(1+tan2x)+3tan2x9=0

or 9tan^2x-3=09tan2x3=0

or 3tan^2x-1=03tan2x1=0

or (sqrt3tanx+1)(sqrt3tanx-1)=0(3tanx+1)(3tanx1)=0

i.e. tanx=-1/sqrt3tanx=13 or 1/sqrt313

and in the interval [0,2pi][0,2π]

x={pi/6,(5pi)/6,(7pi)/6,(11pi)/6}x={π6,5π6,7π6,11π6}