(4y)^y -8^(5y-6)=0 (4y)y−85y−6=0
2^(2y)y^y=2^(3(5y-6))=2^(15y)2^(-18)22yyy=23(5y−6)=215y2−18
simplifying
y^y=2^(13y)2^(-18)yy=213y2−18
or
(y/2^13)^y=2^(-18)(y213)y=2−18
Calling now z=y/2^(13)z=y213
z^(2^(13)z)=(z^z)^(2^13)=2^(-18)z213z=(zz)213=2−18
or
z^z = 2^(-18/(2^13))zz=2−18213
giving
z=z_0=log(a)/(W(log(a)))=0.00017619671713605924z=z0=log(a)W(log(a))=0.00017619671713605924
with a=2^(-18/(2^13))a=2−18213
where W(z)=ze^zW(z)=zez is the so called Lambert function.
and finally
y = 2^(13) xx 0.00017619671713605924=1.4434035067785973y=213×0.00017619671713605924=1.4434035067785973