Question #d1ddf

1 Answer
Mar 22, 2017

y = 1.4434035067785973y=1.4434035067785973

Explanation:

(4y)^y -8^(5y-6)=0 (4y)y85y6=0

2^(2y)y^y=2^(3(5y-6))=2^(15y)2^(-18)22yyy=23(5y6)=215y218

simplifying

y^y=2^(13y)2^(-18)yy=213y218

or

(y/2^13)^y=2^(-18)(y213)y=218

Calling now z=y/2^(13)z=y213

z^(2^(13)z)=(z^z)^(2^13)=2^(-18)z213z=(zz)213=218

or

z^z = 2^(-18/(2^13))zz=218213

giving

z=z_0=log(a)/(W(log(a)))=0.00017619671713605924z=z0=log(a)W(log(a))=0.00017619671713605924

with a=2^(-18/(2^13))a=218213

where W(z)=ze^zW(z)=zez is the so called Lambert function.

and finally

y = 2^(13) xx 0.00017619671713605924=1.4434035067785973y=213×0.00017619671713605924=1.4434035067785973