Remember #cot(x) = cos(x)/sin(x)#
#((cos^2(x)/sin^2(x))cos^2(x))/((cos^2(x)/sin^2(x))-cos^2(x))#
#((cos^2(x)/sin^2(x))(cos^2(x)/1))/((cos^2(x)/sin^2(x))-((cos^2(x)sin^2(x))/sin^2(x))#
#(cos^4(x)/sin^2(x))/((cos^2(x)-sin^2(x)cos^2(x))/sin^2(x))#
#cos^4(x)/(cos^2(x)-sin^2(x)cos^2(x))#
#cos^4(x)/(cos^2(x)(1-sin^2(x))#
#cos^2(x)/(1-sin^2(x))#
Use trig identities, specifically:
#sin^2(x)+cos^2(x)=1#
#cos^2(x)=1-sin^2(x)#
#cos^2(x)/cos^2(x)#
1