Question #a0310 Calculus Limits Determining Limits Algebraically 1 Answer Cesareo R. Mar 30, 2017 See below. Explanation: #(sqrt(x^4-x)-x^2)((sqrt(x^4-x)+x^2)/(sqrt(x^4-x)+x^2))=(x^4-x-x^4)/(sqrt(x^4-x)+x^2)=-x/(sqrt(x^4-x)+x^2)=-x/(x^2(sqrt(1-1/x^3)+1))=# #=-1/(x(sqrt(1-1/x^3)+1))# Now calling #y=sqrt(x)# #lim_(x->0)sqrt(x^4-x)-x^2=lim_(y->0)y(sqrt(y^6-1)-y^3) = 0# and #lim_(x->oo)sqrt(x^4-x)-x^2=lim_(x->oo)(-1/(x(sqrt(1-1/x^3)+1)))=0# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 918 views around the world You can reuse this answer Creative Commons License