y=x+1y=x+1 => eq-1
2x^2+y^2=172x2+y2=17 => eq-2
Substitute x+1x+1 from 1 for yy in 2:
2x^2+(x+1)^2=172x2+(x+1)2=17 => expand:
2x^2+x^2+2x+1=172x2+x2+2x+1=17 => simplify:
3x^2+2x-16=03x2+2x−16=0 =>factor by grouping:
3x^2-6x+8x-16=03x2−6x+8x−16=0
3x(x-2)+8(x-2)=03x(x−2)+8(x−2)=0
(3x+8)(x-2)=0(3x+8)(x−2)=0
x=-8/3, 2x=−83,2 => substitute in 1 solve for yy:
y=-5/3, 3y=−53,3