Find the coefficient of x^7 in the expansion of (1-x)^(-2)?

1 Answer
Oct 15, 2017

The coefficient of x^7 is 8

Explanation:

The Binomial expansion of (1+x)^n is given by

(1+x)^n=sum_(r=0)^(r=n)C_r^nx^r,

where C_r^n=(n!)/(r!(n-r)!)=(n(n-1)(n-2)...(n-r+1))/(1*2*3....*r)

that is coefficients would be 1,n,(n(n-1))/(1*2),(n(n-1)(n-2))/(1*2*3),.....

Hence (1-x)^(-2)=sum_(r=0)^(r=n)C_r^(-2)(-x)^r

i.e. (1-x)^(-2)=1+((-2))/1(-x)+((-2)(-3))/(1*2)(-x)^2+((-2)(-3)(-4))/(1*2*3)(-x)^3+...

and term containing x^7 woud be

((-2)(-3)(-4)(-5)(-6)(-7)(-8))/(1*2*3*4*5*6*7)(-x)^7

= 8x^7

And the coefficient of x^7 is 8