Question #cf5ae

2 Answers
Mar 10, 2017

I tried this:

Explanation:

Ok, it should be:
2cos^2(x)-1=02cos2(x)1=0
rearrange:
cos^2(x)=1/2cos2(x)=12
cos(x)=+-1/sqrt(2)=+-sqrt(2)/2cos(x)=±12=±22
(where at the end I rationalized).

Now we need to find suitable values for xx so that the cosine will be equal to +-sqrt(2)/2±22:
Have a look:
enter image source here

At least in the interval [0,2pi][0,2π] we will get 4 possibilities:
A) x=pi/4x=π4
B) x=3/4pix=34π
C) x=5/4pix=54π
D) x=7/4pix=74π

this will be repeated periodically every 2pi2π

Mar 10, 2017

" The Soln. Set="{2kpi+-pi/4 : k in ZZ}uu{2kpi+-3pi/4 : k in ZZ}.

Explanation:

2cos^2x-1=0

rArr 2cos^2x=1, or, cos^2x=1/2.

rArr cosx=+-1/sqrt2.

Knowing that, costheta=cosalpha rArr theta=2kpi+-alpha, k in ZZ.

cosx=1/sqrt2=cos(pi/4) rArr x=2kpi+-pi/4, k in ZZ.

cosx=-1/sqrt2=cos(3pi/4) rArr x=2kpi+-3pi/4, k in ZZ.

:." The Soln. Set="{2kpi+-pi/4 : k in ZZ}uu{2kpi+-3pi/4 : k in ZZ}.

Enjoy Maths.!