Question #82a63

3 Answers
Mar 10, 2017

" The Soln. Set="{2kpi+2arc tan2 : k in ZZ}.

Explanation:

Knowing that, sinx=2sin(x/2)cos(x/2), &, 1+cosx=2cos^2(x/2), we have,

sinx/(1+cosx)=2.

rArr {2sin(x/2)cos(x/2)}/(2cos^2(x/2))=2.

rArr tan(x/2)=2, .............[if, cos(x/2)ne0,}

rArr tan(x/2)=tan(arc tan2)

rArr x/2=kpi+arc tan 2, k inn ZZ.

rArr x=2kpi+2arc tan2, k in ZZ.

Considering the constraint cos(x/2) ne0, we observe that,

cos(x/2)=0 rArr 1+cosx=2cos^2(x/2)=0, & so, the eqn.

becomes meaningless. :. cos(x/2)!=0.

:." The Soln. Set="{2kpi+2arc tan2 : k in ZZ}.

The Other eqn., : sinx/(1-cosx)=2, can similarly be dealt with.

Enjoy maths.!

Mar 11, 2017

127^@59; 179^@27

Explanation:

sin x = 2 + 2cos x
sin x - 2cos x = 2 ( 1 )
Call tan t = sin t/(cos t) = 2 --> t = 63^@43
Equation (1) -->
sin x - (sin t)/(cos t)cos x = 2cos x = 2(0.45) = 0.90
sin (x - t) = sin (x - 63.43) = 0.90
Calculator and unit circle give -->2 solutions

a. (x - 63.43) = 64^@16
x = 64.16 + 63.43 = 127^@59

b. x - 63.43 = 180 - 64.16 = 115^@84
x = 115.84 + 63.43 = 179^@27

Mar 12, 2017

127^@59; 179.27

Explanation:

sin x = 2 + 2cos x
sin x - 2cos x = 2
Call tan t = sin t/(cos t) = 2 --> t = 63^@43 --> cos t = 0.45
sin x - (sin t/cos t)cos x = 2
sin x.cos t - sin t.cos x = 2cos t
sin (x - t) = 2cos t = 0.90 .
Calculator and unit circle give 2 solutions:
a. (x - t) = (x - 63.43) = 64.16 -->
x = 63.43 + 64.16 = 127@59
b. (x - 63.43) = 180 - 64.16 = 115.84
x = 115.84 + 63.43 = 179^@27
Answers for (0, 360):
127^@59; 179^@27
Check by calculator:
x = 127.59 --> sin x = 0.78 --> cos x = - 0.61
sin x - 2cos x = 0.78 + 1.22 = 2. OK
x = 179.27 --> sin x = 0.01 --> cos x = - 0.995 -->
sin x - 2cos x = 0.01 + 1.99 = 2. OK