Evaluate #(2x-3)^5#?
1 Answer
Explanation:
Let's break this down a bit by rewriting the expression:
Let's first work out
FOIL
#color(red)(F)# - First terms -#(color(red)(a)+b)(color(red)(c)+d)# #color(brown)(O)# - Outside terms -#(color(brown)(a)+b)(c+color(brown)d)# #color(blue)(I)# - Inside terms -#(a+color(blue)b)(color(blue)(c)+d)# #color(green)(L)# - Last terms -#(a+color(green)b)(c+color(green)d)#
This gives us:
#color(red)(F)=>(2x)(2x)=4x^2# #color(brown)(O)=>(2x)(-3)=-6x# #color(blue)(I)=>(-3)(2x)=-6x# #color(green)(L)=>(-3)(-3)=9#
Which means we know have:
Let's go ahead and multiply the two trinomials:
#(4x^2)(4x^2)=16x^4# #(4x^2)(-12x)=-48x^3# #(4x^2)(9)=36x^2# #(-12x)(4x^2)=-48x^3# #(-12x)(-12x)=144x^2# #(-12x)(9)=-108x# #(9)(4x^2)=36x^2# #(9)(-12x)=-108x# #(9)(9)=81#
And now to complete things, let's multiply the last of the brackets:
#(16x^4)(2x)=32x^5# #(16x^4)(-3)=-48x^4# #(-96x^3)(2x)=-192x^4# #(-96x^3)(-3)=288x^3# #(216x^2)(2x)=432x^3# #(216x^2)(-3)=-648x^2# #(-216x)(2x)=-432x^2# #(-216x)(-3)=648x# #(81)(2x)=162x# #(81)(-3)=-243#
~~~~~~~~~~
This was quite the undertaking - I'm going to check my work by using a different method - the Binomial Theorem, which states that the terms in an expansion of the form
which will give us:
#+(5!)/((0!)(5!))(2x)^5(-3)^0=1(32x^5)(1)=32x^5# #+(5!)/((1!)(4!))(2x)^4(-3)^1=5(16x^4)(-3)=-240x^4# #+(5!)/((2!)(3!))(2x)^3(-3)^2=10(8x^3)(9)=720x^3# #+(5!)/((3!)(2!))(2x)^2(-3)^3=10(4x^2)(-27)=-1080x^2# #+(5!)/((4!)(1!))(2x)^1(-3)^4=5(2x)(81)=810x# #+(5!)/((5!)(0!))(2x)^0(-3)^5=(1)(1)(-243)=-243#
and it's from here that I can see I made a mistake above! (which I've now edited out...)