5 cos^2(x)+ 9 sin(x) =95cos2(x)+9sin(x)=9
=>5 -5 sin^2(x)+ 9 sin(x) =9⇒5−5sin2(x)+9sin(x)=9
=>5 sin^2(x)- 9 sin(x) +9-5=0⇒5sin2(x)−9sin(x)+9−5=0
=>5 sin^2x- 5sinx-4sinx +4=0⇒5sin2x−5sinx−4sinx+4=0
=>5 sinx(sinx-1)-4(sinx-1)=0⇒5sinx(sinx−1)−4(sinx−1)=0
=>(sinx-1)(5 sinx-4)=0⇒(sinx−1)(5sinx−4)=0
When
sinx-1=0=>sinx=1=sin(pi/2)sinx−1=0⇒sinx=1=sin(π2)
=>x=npi+(-1)^npi/2" where " n in ZZ
Again when
(5 sinx-4)=0
=>sinx =4/5=sin(sin^-1(4/5))
=>x=npi+(-1)^nsin^-1(4/5)" where " n in ZZ
where sin^-1(4/5)~~0.3pi