Question #7c3e7

1 Answer
Feb 20, 2017

sin15sin15

=sin(60-45)=sin(6045)

=sin60cos45-cos60sin45=sin60cos45cos60sin45

=sqrt3/2*1/sqrt2-1/2*1/sqrt2=32121212

=(sqrt3-1)/(2sqrt2)=3122

cos15cos15

=cos(60-45)=cos(6045)

=cos60cos45+sin60sin45=cos60cos45+sin60sin45

=1/2*1/sqrt2+sqrt3/2*1/sqrt2=1212+3212

=(sqrt3+1)/(2sqrt2)=3+122

Now given equation

(sqrt3-1)cosx+(sqrt3+1)sinx=2(31)cosx+(3+1)sinx=2

Dividing both sides by 2sqrt222 we get

(sqrt3-1)/(2sqrt2)cosx+(sqrt3+1)/(2sqrt2)sinx=1/sqrt23122cosx+3+122sinx=12

=>sin15^@cosx+cos15^@sinx=1/sqrt2sin15cosx+cos15sinx=12

=>sin(x+15^@)=sin45^@sin(x+15)=sin45

=>sin(x+pi/12)=sin(pi/4)sin(x+π12)=sin(π4)

=>x+pi/12=npi+(-1)^npi/4" where " n in ZZ

=>x=npi+(-1)^npi/4-pi/12" where " n in ZZ