sin15
=sin(60-45)
=sin60cos45-cos60sin45
=sqrt3/2*1/sqrt2-1/2*1/sqrt2
=(sqrt3-1)/(2sqrt2)
cos15
=cos(60-45)
=cos60cos45+sin60sin45
=1/2*1/sqrt2+sqrt3/2*1/sqrt2
=(sqrt3+1)/(2sqrt2)
Now given equation
(sqrt3-1)cosx+(sqrt3+1)sinx=2
Dividing both sides by 2sqrt2 we get
(sqrt3-1)/(2sqrt2)cosx+(sqrt3+1)/(2sqrt2)sinx=1/sqrt2
=>sin15^@cosx+cos15^@sinx=1/sqrt2
=>sin(x+15^@)=sin45^@
=>sin(x+pi/12)=sin(pi/4)
=>x+pi/12=npi+(-1)^npi/4" where " n in ZZ
=>x=npi+(-1)^npi/4-pi/12" where " n in ZZ