Question #7c3e7

1 Answer
Feb 20, 2017

sin15

=sin(60-45)

=sin60cos45-cos60sin45

=sqrt3/2*1/sqrt2-1/2*1/sqrt2

=(sqrt3-1)/(2sqrt2)

cos15

=cos(60-45)

=cos60cos45+sin60sin45

=1/2*1/sqrt2+sqrt3/2*1/sqrt2

=(sqrt3+1)/(2sqrt2)

Now given equation

(sqrt3-1)cosx+(sqrt3+1)sinx=2

Dividing both sides by 2sqrt2 we get

(sqrt3-1)/(2sqrt2)cosx+(sqrt3+1)/(2sqrt2)sinx=1/sqrt2

=>sin15^@cosx+cos15^@sinx=1/sqrt2

=>sin(x+15^@)=sin45^@

=>sin(x+pi/12)=sin(pi/4)

=>x+pi/12=npi+(-1)^npi/4" where " n in ZZ

=>x=npi+(-1)^npi/4-pi/12" where " n in ZZ