sin15sin15
=sin(60-45)=sin(60−45)
=sin60cos45-cos60sin45=sin60cos45−cos60sin45
=sqrt3/2*1/sqrt2-1/2*1/sqrt2=√32⋅1√2−12⋅1√2
=(sqrt3-1)/(2sqrt2)=√3−12√2
cos15cos15
=cos(60-45)=cos(60−45)
=cos60cos45+sin60sin45=cos60cos45+sin60sin45
=1/2*1/sqrt2+sqrt3/2*1/sqrt2=12⋅1√2+√32⋅1√2
=(sqrt3+1)/(2sqrt2)=√3+12√2
Now given equation
(sqrt3-1)cosx+(sqrt3+1)sinx=2(√3−1)cosx+(√3+1)sinx=2
Dividing both sides by 2sqrt22√2 we get
(sqrt3-1)/(2sqrt2)cosx+(sqrt3+1)/(2sqrt2)sinx=1/sqrt2√3−12√2cosx+√3+12√2sinx=1√2
=>sin15^@cosx+cos15^@sinx=1/sqrt2⇒sin15∘cosx+cos15∘sinx=1√2
=>sin(x+15^@)=sin45^@⇒sin(x+15∘)=sin45∘
=>sin(x+pi/12)=sin(pi/4)⇒sin(x+π12)=sin(π4)
=>x+pi/12=npi+(-1)^npi/4" where " n in ZZ
=>x=npi+(-1)^npi/4-pi/12" where " n in ZZ