#sin15#
#=sin(60-45)#
#=sin60cos45-cos60sin45#
#=sqrt3/2*1/sqrt2-1/2*1/sqrt2#
#=(sqrt3-1)/(2sqrt2)#
#cos15#
#=cos(60-45)#
#=cos60cos45+sin60sin45#
#=1/2*1/sqrt2+sqrt3/2*1/sqrt2#
#=(sqrt3+1)/(2sqrt2)#
Now given equation
#(sqrt3-1)cosx+(sqrt3+1)sinx=2#
Dividing both sides by #2sqrt2# we get
#(sqrt3-1)/(2sqrt2)cosx+(sqrt3+1)/(2sqrt2)sinx=1/sqrt2#
#=>sin15^@cosx+cos15^@sinx=1/sqrt2#
#=>sin(x+15^@)=sin45^@#
#=>sin(x+pi/12)=sin(pi/4)#
#=>x+pi/12=npi+(-1)^npi/4" where " n in ZZ#
#=>x=npi+(-1)^npi/4-pi/12" where " n in ZZ#