Question #2dd5b

1 Answer
Feb 15, 2017

Given tanu=5/12
Both u and v are in III quadrant
So
tanu->+ve

tanv->+ve

sinu->-ve

sinv->-ve

cosu->-ve

cosv->-ve

sinu=1/cscu=-1/sqrt(1+cot^2u)=-1/sqrt(1+12^2/5^2)=-5/13

cosu=sinu/tanu=-(5/13)/(5/12)=-12/13

Given sinv=-3/5

cosv
=-sqrt(1-sin^2v)=-sqrt(1-9/25)=-4/5

tanv=sinv/cosv=3/4

sin(u+v)

=sinucosv+cosusinv

=(-5/13)(-4/5)+(-12/13)(-3/5)

=20/65+36/65=56/65

tan(u+v)=(tanu+tanv)/(1-tanutanv)

=(5/12+3/4)/(1-5/12*3/4)=(14/12)/(11/16)=7/6*16/11=56/33

cos(u+v)

=cosucosv-sinusinv

=(-12/13)(-4/5)-(-5/13)(-3/5)

=48/65-15/65=33/65