Given tanu=5/12
Both u and v are in III quadrant
So
tanu->+ve
tanv->+ve
sinu->-ve
sinv->-ve
cosu->-ve
cosv->-ve
sinu=1/cscu=-1/sqrt(1+cot^2u)=-1/sqrt(1+12^2/5^2)=-5/13
cosu=sinu/tanu=-(5/13)/(5/12)=-12/13
Given sinv=-3/5
cosv
=-sqrt(1-sin^2v)=-sqrt(1-9/25)=-4/5
tanv=sinv/cosv=3/4
sin(u+v)
=sinucosv+cosusinv
=(-5/13)(-4/5)+(-12/13)(-3/5)
=20/65+36/65=56/65
tan(u+v)=(tanu+tanv)/(1-tanutanv)
=(5/12+3/4)/(1-5/12*3/4)=(14/12)/(11/16)=7/6*16/11=56/33
cos(u+v)
=cosucosv-sinusinv
=(-12/13)(-4/5)-(-5/13)(-3/5)
=48/65-15/65=33/65