Given #tanu=5/12#
Both #u and v # are in III quadrant
So
#tanu->+ve#
#tanv->+ve#
#sinu->-ve#
#sinv->-ve#
#cosu->-ve#
#cosv->-ve#
#sinu=1/cscu=-1/sqrt(1+cot^2u)=-1/sqrt(1+12^2/5^2)=-5/13#
#cosu=sinu/tanu=-(5/13)/(5/12)=-12/13#
Given #sinv=-3/5#
#cosv#
#=-sqrt(1-sin^2v)=-sqrt(1-9/25)=-4/5#
#tanv=sinv/cosv=3/4#
#sin(u+v)#
#=sinucosv+cosusinv#
#=(-5/13)(-4/5)+(-12/13)(-3/5)#
#=20/65+36/65=56/65#
#tan(u+v)=(tanu+tanv)/(1-tanutanv)#
#=(5/12+3/4)/(1-5/12*3/4)=(14/12)/(11/16)=7/6*16/11=56/33#
#cos(u+v)#
#=cosucosv-sinusinv#
#=(-12/13)(-4/5)-(-5/13)(-3/5)#
#=48/65-15/65=33/65#