#2sin^2x-9sinx=5#
#=>2sin^2x-9sinx-5=0#
#=>2sin^2x-10sinx+sinx-5=0#
#=>2sinx(sinx-5)+1(sinx-5)=0#
#=>(sinx-5)(2sinx+1)=0#
#sinx=5->"not possible"#
#2sinx+1=0#
#=>sinx=-1/2=-sin(pi/6)#
#=>sinx=sin(pi+pi/6)=sin((7pi)/6)#
So #x=(7pi)/6#
Again
#=>sinx=-1/2=-sin(pi/6)#
#=>sinx=sin(2pi-pi/6)=sin((11pi)/6)#
#=>x=(11pi)/6#
Hence solutions are
#x=(7pi)/6 and (11pi)/6" when "x in [0,2pi]#