Question #dc75d

1 Answer
Feb 10, 2017

x=(7pi)/6 and (11pi)/6" when "x in [0,2pi]x=7π6and11π6 when x[0,2π]

Explanation:

2sin^2x-9sinx=52sin2x9sinx=5
=>2sin^2x-9sinx-5=02sin2x9sinx5=0

=>2sin^2x-10sinx+sinx-5=02sin2x10sinx+sinx5=0

=>2sinx(sinx-5)+1(sinx-5)=02sinx(sinx5)+1(sinx5)=0

=>(sinx-5)(2sinx+1)=0(sinx5)(2sinx+1)=0

sinx=5->"not possible"sinx=5not possible

2sinx+1=02sinx+1=0

=>sinx=-1/2=-sin(pi/6)sinx=12=sin(π6)

=>sinx=sin(pi+pi/6)=sin((7pi)/6)sinx=sin(π+π6)=sin(7π6)
So x=(7pi)/6x=7π6

Again

=>sinx=-1/2=-sin(pi/6)sinx=12=sin(π6)

=>sinx=sin(2pi-pi/6)=sin((11pi)/6)sinx=sin(2ππ6)=sin(11π6)

=>x=(11pi)/6x=11π6

Hence solutions are

x=(7pi)/6 and (11pi)/6" when "x in [0,2pi]x=7π6and11π6 when x[0,2π]