2sin^2x-9sinx=52sin2x−9sinx=5
=>2sin^2x-9sinx-5=0⇒2sin2x−9sinx−5=0
=>2sin^2x-10sinx+sinx-5=0⇒2sin2x−10sinx+sinx−5=0
=>2sinx(sinx-5)+1(sinx-5)=0⇒2sinx(sinx−5)+1(sinx−5)=0
=>(sinx-5)(2sinx+1)=0⇒(sinx−5)(2sinx+1)=0
sinx=5->"not possible"sinx=5→not possible
2sinx+1=02sinx+1=0
=>sinx=-1/2=-sin(pi/6)⇒sinx=−12=−sin(π6)
=>sinx=sin(pi+pi/6)=sin((7pi)/6)⇒sinx=sin(π+π6)=sin(7π6)
So x=(7pi)/6x=7π6
Again
=>sinx=-1/2=-sin(pi/6)⇒sinx=−12=−sin(π6)
=>sinx=sin(2pi-pi/6)=sin((11pi)/6)⇒sinx=sin(2π−π6)=sin(11π6)
=>x=(11pi)/6⇒x=11π6
Hence solutions are
x=(7pi)/6 and (11pi)/6" when "x in [0,2pi]x=7π6and11π6 when x∈[0,2π]