Solve the equation tan^2x=3(3-secx)tan2x=3(3secx), if xx lies in interval [0^@,360^@)[0,360)?

1 Answer
Feb 5, 2017

xx is 60^@, 101.5^@, 258.5^@60,101.5,258.5 or 300^@300

Explanation:

As tan^2x=3(3-secx)tan2x=3(3secx), we have

sec^2x-1=9-3secxsec2x1=93secx

or sec^2x+3secx-10=0sec2x+3secx10=0

or (secx+5)(secx-2)=0(secx+5)(secx2)=0

Hence secx=-5secx=5 or secx=2secx=2 and using tables

cosx=-0.2=cos101.5^@cosx=0.2=cos101.5 and cos258.5^@cos258.5

or cosx=0.5=cos60^@cosx=0.5=cos60 and cos300^@cos300

(as cos(360^@-A)=cosAcos(360A)=cosA)

Hence, xx is 60^@, 101.5^@, 258.5^@60,101.5,258.5 or 300^@300