sin(x/2)=1-cosxsin(x2)=1−cosx
=>sin(x/2)=2sin^2(x/2)⇒sin(x2)=2sin2(x2)
=>sin(x/2)-2sin^2(x/2)=0⇒sin(x2)−2sin2(x2)=0
=>sin(x/2)(1-2sin(x/2))=0⇒sin(x2)(1−2sin(x2))=0
when sin(x/2)=0=sin0sin(x2)=0=sin0
=>x/2==npi" where " n in ZZ
=>x=2npi
when 1-2sin(x/2)=0
=>sin(x/2)=1/2=sin(pi/6)
=>x/2==npi+(-1)^npi/6" where " n in ZZ
=>x=2npi+(-1)^npi/3