Question #7f803

1 Answer
Jan 30, 2017

4sinxcosx-2sqrt3sinx+2cosx-sqrt3=0

=>2sinx(2cosx-sqrt3)+1(2cosx-sqrt3)=0

=>(2cosx-sqrt3)(2sinx+1)=0

So 2cosx-sqrt3=0
=>cosx=sqrt3/2=cos(pi/6)=cos(2pi-pi/6)=cos((11pi)/6)

Hence

=>x=pi/6 and (11pi)/6

Again

2sinx+1=0

sinx=-1/2=-sin(pi/6)=sin(pi+pi/6)

So =>x=(7pi)/6

Again

sinx=-1/2=-sin(pi/6)=sin(2pi-pi/6)

=>x=(11pi)/6

Hence solutions for 0<=x<=2pi

x = pi/6,(7pi)/6,(11pi)/6