#4sinxcosx-2sqrt3sinx+2cosx-sqrt3=0#
#=>2sinx(2cosx-sqrt3)+1(2cosx-sqrt3)=0#
#=>(2cosx-sqrt3)(2sinx+1)=0#
So #2cosx-sqrt3=0#
#=>cosx=sqrt3/2=cos(pi/6)=cos(2pi-pi/6)=cos((11pi)/6)#
Hence
#=>x=pi/6 and (11pi)/6#
Again
#2sinx+1=0#
#sinx=-1/2=-sin(pi/6)=sin(pi+pi/6)#
So #=>x=(7pi)/6#
Again
#sinx=-1/2=-sin(pi/6)=sin(2pi-pi/6)#
#=>x=(11pi)/6#
Hence solutions for #0<=x<=2pi#
#x = pi/6,(7pi)/6,(11pi)/6#