First we square both sides:
(sqrt(4)/sqrt(4x+9))^2=(sqrt(8x+2))^2(√4√4x+9)2=(√8x+2)2
(sqrt(4))^2/(sqrt(4x+9))^2=(sqrt(8x+2))^2(√4)2(√4x+9)2=(√8x+2)2
4/(4x+9)=8x+244x+9=8x+2
Now we can rearrange and make it eqial to 0:
4=(8x+2)(4x+9)4=(8x+2)(4x+9)
(8x+2)(4x+9)-4=0(8x+2)(4x+9)−4=0
Now expand brackets:
(8x*4x)+(2*4x)+(8x*9)+(2*9)-4=0(8x⋅4x)+(2⋅4x)+(8x⋅9)+(2⋅9)−4=0
32x^2+8x+72x+18-4=032x2+8x+72x+18−4=0
32x^2+80x+14=032x2+80x+14=0
We can remove out common factors:
32x^2+80x+14=032x2+80x+14=0
16x^2+40x+7=016x2+40x+7=0
x=(-b+-sqrt(b^2-4ac))/(2a)x=−b±√b2−4ac2a
x=(-40+-sqrt(40^2-4(16*7)))/32x=−40±√402−4(16⋅7)32
=(-40+-sqrt(1600-4(112)))/32=−40±√1600−4(112)32
=(-40+-sqrt(1600-448))/32=−40±√1600−44832
=(-40+-sqrt(1152))/32=−40±√115232
=(-40+sqrt(1152))/32or(-40-sqrt(1152))/32=−40+√115232or−40−√115232
~~-2.31or-0.19≈−2.31or−0.19