Question #789d1 Precalculus Real Zeros of Polynomials Long Division of Polynomials 1 Answer salamat Jan 27, 2017 #= 1/(9x^-1)# or #x/9# Explanation: #((3x)^2(3x)^-3)/(3x^-2)# #= (3x)^(2+(-3))/(3x^-2)#, use #a^m*a^n = a^(m+n)# #= (3x)^-1/(3x^-2)=1/((3x)(3x^-2))#, use #a^-m=1/a^m# #=1/(3*x*3*x^-2)# #= 1/(9x^-1)# or #x/9# Answer link Related questions What is long division of polynomials? How do I find a quotient using long division of polynomials? What are some examples of long division with polynomials? How do I divide polynomials by using long division? How do I use long division to simplify #(2x^3+4x^2-5)/(x+3)#? How do I use long division to simplify #(x^3-4x^2+2x+5)/(x-2)#? How do I use long division to simplify #(2x^3-4x+7x^2+7)/(x^2+2x-1)#? How do I use long division to simplify #(4x^3-2x^2-3)/(2x^2-1)#? How do I use long division to simplify #(3x^3+4x+11)/(x^2-3x+2)#? How do I use long division to simplify #(12x^3-11x^2+9x+18)/(4x+3)#? See all questions in Long Division of Polynomials Impact of this question 1104 views around the world You can reuse this answer Creative Commons License