Question #db5cd
1 Answer
Feb 10, 2017
Explanation:
Use
#1/e = 2e^(3x - 4)#
Cross multiply:
#1 = 2e^(3x - 4)e^1#
Use
#1 = 2e^(3x - 4 + 1)#
#1 = 2e^(3x - 3)#
#1/2 = e^(3x - 3)#
Take the natural logarithm of both sides.
#ln(1/2) = ln(e^(3x- 3))#
Use
#ln(1/2) = (3x- 3)lne#
#ln(1/2) = 3x- 3#
#1/3(ln(1/2) + 3) = x#
Use
#1/3(ln1 - ln2 + 3) = x#
We know that
#1/3(3 - ln2) = x#
#1 - 1/3ln2 = x#
Use
#1 - ln2^(1/3) = x#
#1 - lnroot(3)(2) = x#
Hopefully this helps!