Question #e650c

1 Answer
Jan 27, 2017

The solutions are S={pi, pi/3, 5/3pi}

Explanation:

We need

cos2x=1-2sin^2x

cosx=1-2sin^2(x/2)

Therefore,

2sin^2(x/2)=1-cosx

sin^2(x/2)=(1-cosx)/2

sin(x/2)=sqrt((1-cosx)/2)

Our equation is

sin(x/2)+cosx=0

Therefore,

sqrt((1-cosx)/2)+cosx=0

sqrt((1-cosx)/2)=-cosx

Squaring both sides

(1-cosx)/2=cos^2x

1-cosx=2cos^2x

The new equation is

2cos^2x+cosx-1=0

We solve this like the quadratic equation

ax^2+bx+c=0

We start by calculating the discriminant

Delta=b^2-4ac=1-4*2+(-1)=9

Delta>0, there are 2 real roots

cosx=(-b+-sqrt(Delta))/(2a)

=(-1+-3)/4

The roots are

cosx=-1, =>, x=pi

cosx=1/2, =>, x=pi/3 , 5/3pi