What kind of function is f(x)=log((1+sinx)/(1-sinx))? Whether odd, even or none?

1 Answer
Nov 1, 2017

f(x)=log((1+sinx)/(1-sinx)) is an odd function.

Explanation:

A function is even if f(-x)=f(x)

and it is odd if f(-x)=-f(x)

here we have f(x)=log((1+sinx)/(1-sinx))=log(1+sinx)-log(1-sinx)#

Hence f(-x)=log((1+sin(-x))/(1-sin(-x)))

= log((1-sinx)/(1+sinx)) - (as sin(-x)=-sinx)

= log(1-sinx)-log(1+sinx)

= -f(x)

Hence f(x)=log((1+sinx)/(1-sinx)) is an odd function.