What is the general solution to the equation sin(3x) - sinx = 1?

1 Answer
Dec 4, 2016

Recall that sin(3x) = sin(2x+ x).

We use the sum formula sin(A + B) = sinAcosB + sinBcosA to expand sin(2x + x).

sin2xcosx + cos2xsinx - sinx = 1

2sinxcosx(cosx) +( 2cos^2x - 1)sinx - sinx = 1

2sinxcos^2x + 2cos^2xsinx - sinx - sinx = 1

4sinxcos^2x - 2sinx = 1

2sinx(2cos^2x- 1) = 1

2cos^2x - 1 = 1/(2sinx)

2cos^2x = 1+ 1/(2sinx)

2(1 - sin^2x) = (2sinx + 1)/(2sinx)

2 (1 - sin^2x) = (2(sinx + 1/2))/(2sinx)

2(1 - sin^2x) = (sinx + 1/2)/(sinx)

(2 - 2sin^2x )sinx = sinx + 1/2

2sinx - 2sin^3x = sinx + 1/2

-2sin^3x + sinx - 1/2 = 0

We let t= sinx.

-2t^3 + t - 1/2 = 0

Solve using a graphing calculator, to get t ~= -0.885.

sinx= -0.885

x = pi + 2pin+ arcsin(0.885) and 2pin - arcsin(0.885)

Hopefully this helps!