Recall that sin(3x) = sin(2x+ x).
We use the sum formula sin(A + B) = sinAcosB + sinBcosA to expand sin(2x + x).
sin2xcosx + cos2xsinx - sinx = 1
2sinxcosx(cosx) +( 2cos^2x - 1)sinx - sinx = 1
2sinxcos^2x + 2cos^2xsinx - sinx - sinx = 1
4sinxcos^2x - 2sinx = 1
2sinx(2cos^2x- 1) = 1
2cos^2x - 1 = 1/(2sinx)
2cos^2x = 1+ 1/(2sinx)
2(1 - sin^2x) = (2sinx + 1)/(2sinx)
2 (1 - sin^2x) = (2(sinx + 1/2))/(2sinx)
2(1 - sin^2x) = (sinx + 1/2)/(sinx)
(2 - 2sin^2x )sinx = sinx + 1/2
2sinx - 2sin^3x = sinx + 1/2
-2sin^3x + sinx - 1/2 = 0
We let t= sinx.
-2t^3 + t - 1/2 = 0
Solve using a graphing calculator, to get t ~= -0.885.
sinx= -0.885
x = pi + 2pin+ arcsin(0.885) and 2pin - arcsin(0.885)
Hopefully this helps!