Question #02e7c

2 Answers
Nov 11, 2016

Given

cos4x = 1 - bsin^2x cos^2xcos4x=1bsin2xcos2x

=>1-2sin^2 2x = 1 - b/4(2sinx cosx)212sin22x=1b4(2sinxcosx)2

=>2sin^2 2x = b/4sin^2 2x2sin22x=b4sin22x

=>b/4=2b4=2

=>b=8b=8

Nov 28, 2016

b = 8

Explanation:

cos 4x =1 - bsin^2 x.cos^2 xcos4x=1bsin2x.cos2x (1)
Use 2 trig identities:
cos 2a = 1 - 2sin^2 acos2a=12sin2a, and
sin 2a = 2sin a.cos a

Replace a by x, we get:
cos 4x = 1 - 2sin^2 (2x)cos4x=12sin2(2x)
Since sin 2x = (2sin x.cos x), then:
2sin^2 (2x) = 2(2sinx.cos x)^22sin2(2x)=2(2sinx.cosx)2
There for:
cos 4x = 1 - 2(2sin x.cos x)^2 = 1 - 8sin^2 x.cos^2 xcos4x=12(2sinx.cosx)2=18sin2x.cos2x. (2)
Compare (1) and (2), we get b = 8.