How do you find the zeros of g(x) = 4x^2-2x-3 using the quadratic formula?
1 Answer
Explanation:
g(x) = 4x^2-2x-3
is in the standard form
We can find the zeros of
x = (-b+-sqrt(b^2-4ac))/(2a)
color(white)(x) = (2+-sqrt((-2)^2-4(4)(-3)))/(2*4)
color(white)(x) = (2+-sqrt(4+48))/8
color(white)(x) = (2+-sqrt(52))/8
color(white)(x) = (2+-sqrt(2^2*13))/8
color(white)(x) = (2+-2sqrt(13))/8
color(white)(x) = 1/4+-sqrt(13)/4
Footnotes
Given any quadratic equation in the form
the quadratic formula:
x = (-b+-sqrt(b^2-4ac))/(2a)
is very useful, but do you know where it comes from, how it works or how to derive it yourself?
Here's one way...
Given
0 = ax^2+bx+c
color(white)(0) = a(x^2+2b/(2a)x + b^2/(4a^2) - b^2/(4a^2) + c/a)
color(white)(0) = a((x+b/(2a))^2-(b^2-4ac)/(4a^2))
color(white)(0) = a((x+b/(2a))^2-(sqrt(b^2-4ac)/(2a))^2)
color(white)(0) = a((x+b/(2a))-(sqrt(b^2-4ac)/(2a)))((x+b/(2a))+(sqrt(b^2-4ac)/(2a)))
color(white)(0) = a(x+(b-sqrt(b^2-4ac))/(2a))(x+(b+sqrt(b^2-4ac))/(2a))
Hence:
x = (-b+-sqrt(b^2-4ac))/(2a)