How do you find the zeros of g(x) = 4x^2-2x-3 using the quadratic formula?

1 Answer
Oct 26, 2016

x = 1/4+-sqrt(13)/4

Explanation:

g(x) = 4x^2-2x-3

is in the standard form ax^2+bx+c, with a=4, b=-2 and c=-3

We can find the zeros of g(x) using the quadratic formula:

x = (-b+-sqrt(b^2-4ac))/(2a)

color(white)(x) = (2+-sqrt((-2)^2-4(4)(-3)))/(2*4)

color(white)(x) = (2+-sqrt(4+48))/8

color(white)(x) = (2+-sqrt(52))/8

color(white)(x) = (2+-sqrt(2^2*13))/8

color(white)(x) = (2+-2sqrt(13))/8

color(white)(x) = 1/4+-sqrt(13)/4

color(white)()
Footnotes

Given any quadratic equation in the form ax^2+bx+c = 0,

the quadratic formula:

x = (-b+-sqrt(b^2-4ac))/(2a)

is very useful, but do you know where it comes from, how it works or how to derive it yourself?

Here's one way...

Given ax^2+bx+c = 0, (with a != 0) we have:

0 = ax^2+bx+c

color(white)(0) = a(x^2+2b/(2a)x + b^2/(4a^2) - b^2/(4a^2) + c/a)

color(white)(0) = a((x+b/(2a))^2-(b^2-4ac)/(4a^2))

color(white)(0) = a((x+b/(2a))^2-(sqrt(b^2-4ac)/(2a))^2)

color(white)(0) = a((x+b/(2a))-(sqrt(b^2-4ac)/(2a)))((x+b/(2a))+(sqrt(b^2-4ac)/(2a)))

color(white)(0) = a(x+(b-sqrt(b^2-4ac))/(2a))(x+(b+sqrt(b^2-4ac))/(2a))

Hence:

x = (-b+-sqrt(b^2-4ac))/(2a)