If #sinu=-4/5# and #pi < u < (3pi)/2#, find #sin2u,cos2u# and #tan2u#? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Shwetank Mauria Aug 22, 2017 #sin2u=24/25#, #cos2u=-7/25# and #tan2u=-24/7# Explanation: As #pi < u < (3pi)/2#, #u# is in #Q3# and #cosu<0#. As #sinu=-4/5#, #cosu=-sqrt(1-(-4/5)^2)=-3/5# Hence, #sin2u=2sinucosu=2xx(-4/5)xx(-3/5)=24/25# #cos2u=cos^2u-sin^2u=9/25-16/25=-7/25# and #tan2u=(sin2u)/(cos2u)=(24/25)/(-7/25)=-24/7# Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for #sin 2x = cos x# for the interval #[0,2pi]#? How do you find all solutions for #4sinthetacostheta=sqrt(3)# for the interval #[0,2pi]#? How do you simplify #cosx(2sinx + cosx)-sin^2x#? If #tan x = 0.3#, then how do you find tan 2x? If #sin x= 5/3#, what is the sin 2x equal to? How do you prove #cos2A = 2cos^2 A - 1#? See all questions in Double Angle Identities Impact of this question 12504 views around the world You can reuse this answer Creative Commons License