4sin4xsin2xsinx=sin3x
=>2*2sin4xsin2xsinx=sin3x
=>2(cos(4x-2x)-cos(4x+2x))sinx=sin3x
=>2cos(2x)sinx-2cos(6x))sinx=sin3x
=>sin(2x+x)-sin(2x-x)-(sin(6x+x)-sin(6x-x))=sin3x
=>sin3x-sinx-sin7x+sin5x=sin3x
=>sin7x-sin5x+sinx=0
=>2cos6xsinx+sinx=0
=>sinx(2cos6x+1)=0
So sinx=0
=>x=npi" where "ninZZ
Again
=>(2cos6x+1)=0
=>cos6x=-1/2=cos((2pi)/3)
=>6x=2npi+-(2pi)/3" where "n inZZ
=>x=(npi)/3+-(pi)/9" where "n inZZ