#2sinx + 2cosx + 2sin2x + 1 = 0#
#2sinx + 2cosx + 2(2sinxcosx) + 1= 0#
#2sinx + 2cosx + 4sinxcosx + 1 = 0#
#(2sinx + 2cosx)^2 = (-1 - 4sinxcosx)^2#
#4sin^2x + 4cos^2x + 8sinxcosx = 1 + 8sinxcosx + 16sin^2xcos^2x#
#4(sin^2x + cos^2x) + 8sinxcosx - 1 - 8sinxcosx - 16sin^2xcos^2x = 0#
#4 - 1 - 16sin^2xcos^2x = 0#
#3 = 16sin^2x(1 - sin^2x)#
#3 = 16sin^2x - 16sin^4x#
#0 = -16sin^4x + 16sin^2x - 3#
#0 = -16sin^4x + 4sin^2x + 12sin^2x - 3#
#0 = -4sin^2x(4sin^2x - 1) + 3(4sin^2x - 1)#
#0= (-4sin^2x + 3)(4sin^2x- 1)#
#sinx= +- sqrt(3)/2" AND "sinx = +-1/2#
#x = 60˚, 120˚, 240˚, 300˚, 30˚, 150˚, 210˚, 330˚#
However, instantly, checking in the original equation, you will notice many of the solutions are extraneous. The actual solutions are as follows:
# x = 210˚, x = 330˚,x = 120˚#
Hopefully this helps!