Solve 2(sinx+cosx)+2sin2x+1=0 ?

3 Answers
Sep 23, 2016

(x = 2/3pi+2kpi) uu (x = 7/6pi+2kpi) for k = 0,pm1,pm2,cdots

Explanation:

Using de Moivre's identity

e^(ix) = cosx+isinx

2((e^(ix)-e^(-ix))/(2i)+(e^(ix)+e^(-ix))/2)+2((e^(2ix)-e^(-2ix))/(2i))+1=0 or

((e^(ix)-e^(-ix))/(i)+e^(ix)+e^(-ix))+((e^(2ix)-e^(-2ix))/(i))+1=0 or

e^(ix)-e^(-ix)+i(e^(ix)+e^(-ix))+e^(2ix)-e^(-2ix)+i=0 or

(e^(ix)-e^(-ix))(1+e^(ix)+e^(-ix))+i(e^(ix)+e^(-ix)+1) = 0 or

(e^(ix)+e^(-ix)+1)(e^(ix)-e^(-ix)+i)=0 or

(2cosx+1)(2sin x+1)=0

so the solutions are

cosx = -1/2 and sin x = -1/2 or

(x = 2/3pi+2kpi) uu (x = 7/6pi+2kpi) for k = 0,pm1,pm2,cdots

Sep 25, 2016

2sinx + 2cosx + 2sin2x + 1 = 0

2sinx + 2cosx + 2(2sinxcosx) + 1= 0

2sinx + 2cosx + 4sinxcosx + 1 = 0

(2sinx + 2cosx)^2 = (-1 - 4sinxcosx)^2

4sin^2x + 4cos^2x + 8sinxcosx = 1 + 8sinxcosx + 16sin^2xcos^2x

4(sin^2x + cos^2x) + 8sinxcosx - 1 - 8sinxcosx - 16sin^2xcos^2x = 0

4 - 1 - 16sin^2xcos^2x = 0

3 = 16sin^2x(1 - sin^2x)

3 = 16sin^2x - 16sin^4x

0 = -16sin^4x + 16sin^2x - 3

0 = -16sin^4x + 4sin^2x + 12sin^2x - 3

0 = -4sin^2x(4sin^2x - 1) + 3(4sin^2x - 1)

0= (-4sin^2x + 3)(4sin^2x- 1)

sinx= +- sqrt(3)/2" AND "sinx = +-1/2

x = 60˚, 120˚, 240˚, 300˚, 30˚, 150˚, 210˚, 330˚

However, instantly, checking in the original equation, you will notice many of the solutions are extraneous. The actual solutions are as follows:

x = 210˚, x = 330˚,x = 120˚

Hopefully this helps!

Sep 25, 2016

2(sinx+cosx)+2sin2x+1=0

=>2sinx+2cosx+4sinxcosx+1=0

=>2sinx+4sinxcosx+2cosx+1=0

=>2sinx(1+2cosx)+(1+2cosx)=0

=>(1+2cosx)(2sinx+1)=0

when
(1+2cosx)=0
=>cosx=-1/2=cos((2pi)/3)
=>x=2npi+-(2pi)/3" "where" "ninZZ

Again when

2sinx+1=0
=>sinx=-1/2=sin(-(pi)/6)
=>x=npi-(-1)^npi/6" "where" "ninZZ