Question #089de Calculus Limits Determining Limits Algebraically 1 Answer Eddie Sep 3, 2016 # = 1/14# Explanation: #lim_(h to 0) {sqrt(49 + h) - 7}/h# #= lim_(h to 0) {7sqrt(1 + h/49) - 7}/h# Binomial Expansion of sqrt term #= lim_(h to 0) {7(1 + 1/2 h/49 + O(h^2)) - 7}/h# #= lim_(h to 0) { 7/2h/49 + O(h^2) }/h# #= lim_(h to 0) 1/14 + O(h)# # = 1/14# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 1299 views around the world You can reuse this answer Creative Commons License