Simplify #(2²a³b²)/(4²b⁵)#? Prealgebra Exponents, Radicals and Scientific Notation Exponents 1 Answer Shwetank Mauria Feb 14, 2017 #(2²a³b²)/(4²b⁵)=a^3/(4b^3)# Explanation: #(2²a³b²)/(4²b⁵)# = #(color(blue)(2xx2)xxaxxaxxaxxcolor(red)(bxxb))/(color(blue)(2xx2)xx2xx2xxcolor(red)(bxxb)xxbxxbxxb)# = #(cancel(color(blue)(2xx2))xxaxxaxxaxxcancel(color(red)(bxxb)))/(cancel(color(blue)(2xx2))xx2xx2xxcancel(color(red)(bxxb))xxbxxbxxb)# = #a^3/(4b^3)# Answer link Related questions How do you simplify #c^3v^9c^-1c^0#? How do you simplify #(- 1/5)^-2 + (-2)^-2#? How do you simplify #(4^6)^2 #? How do you simplify #3x^(2/3) y^(3/4) (2x^(5/3) y^(1/2))^3 #? How do you simplify #4^3·4^5#? How do you simplify #(5^-2)^-3#? How do you simplify and write #(-5.3)^0# with positive exponents? How do you factor #12j^2k - 36j^6k^6 + 12j^2#? How do you simplify the expression #2^5/(2^3 times 2^8)#? When can I add exponents? See all questions in Exponents Impact of this question 2267 views around the world You can reuse this answer Creative Commons License