Question #02a6f

1 Answer
Feb 6, 2017

To be contd.............

Explanation:

We use, a3+b3=(a+b)(a2ab+b2) to get,

(cosθ)6+(sinθ)6=cos6θ+sin6θ

=(cos2θ+sin2θ)(cos4θcos2θsin2θ+sin4θ)

=(1){(cos2θ+sin2θ)22sin2θcos2θcos2θsin2θ}

=13cos2θsin2θ

=134(2sinθcosθ)2

=134(sin2θ)2

=134(sin2(2θ))

Recall that, 1cos2A=2sin2A.

Hence, the Exp.=138{2sin2(2θ)}

=138(1cos4θ)

=138+38cos4θ

=58+38cos4θ