Question #2d385

1 Answer
Jun 23, 2016

First part in a lot of detail to demonstrate algebraic manipulation.
Second part not so.

Point common to both equations is:
(x,y)->(3,2)

Explanation:

Given:" "7x+y=23 ........................Equation (1)
" "3x=4y+1.........................Equation (2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Consider equation(1)

Subtract 7x from both sides

y=-7x+23" ............................Equation" (1_a)

color(green)("Substitute for "color(blue)(y)" in equation (2) using "(1_a))

color(brown)(3x=4color(blue)(y)+1" "->" "3x=4color(blue)((-7x+23))+1)

color(white)()

color(brown)(3x=-28x+92+1)" "color(green)(larr" multiplied out the bracket")
color(white)()

color(brown)(3xcolor(blue)(+28x)=-28xcolor(blue)(+28x)+93)color(green)(larr" add "color(blue)(28x)" to both sides")
color(white)()

color(brown)(31x=0+93)
color(white)()

color(brown)(31/(color(blue)(31)) x=93/(color(blue)(31)) )color(green)(larr" divide both sides by "color(blue)(31))

color(white)()

color(brown)(x=3)" "color(green)(larr31/31=1" and "93/31 = 3)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute for x in (1)

7x+y=23" " =>" " y=2