Balanced Equation
#"Ca(s)" + 2"H"_2"O"##rarr##"Ca(OH)"_2("s") + "H"_2("g")"#
#"STP"# is #"273.15 K"# and #"100 kPa"#.
The molar volume of a gas at #"273.15 K"# and #"100 kPa"# is #"22.710 mol/L"#
Molar mass of #"Ca = 40.078 g/mol"# (atomic weight in g/mol)
The process:
#color(red)("L H"_2")##rarr##color(red)("mol H"_2")##rarr##color(green)("mol Ca")##rarr##color(blue)("mass Ca")#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(red)("L H"_2")##rarr##color(red)("mol H"_2")#
First determine moles #"H"_2"# by dividing the given volume by the molar volume #("22.710 L/mol")#. I prefer to divide by multiplying by the reciprocal of its molar volume #("1 mol/22.710 L")#.
#15.7color(red)cancel(color(black)("L H"_2))xx(1"mol H"_2)/(22.710color(red)cancel(color(black)("L")))="0.6913 mol H"_2"#
#color(red)("mol H"_2")##rarr##color(green)("mol Ca")#
To get mol #"Ca"#, multiply mol #"H"_2"# by the mole ratio between #"Ca"# and #"H"_2"# from the balanced equation, with #"Ca"# in the numerator.
#0.6913color(red)cancel(color(black)("mol H"_2))xx(1"mol Ca")/(1color(red)cancel(color(black)("mol H")))="0.6913 mol Ca"#
#color(green)("mol Ca")##rarr##color(blue)("mass Ca")#
To determine mass of #"Ca"# multiply times its molar mass.
#0.6913color(red)cancel(color(black)("mol Ca"))xx(40.078"g Ca")/(1color(red)cancel(color(black)("mol Ca")))="27.7 g Ca"# (rounded to three significant figures)
You can put all three steps together into one equation.
#15.7color(red)cancel(color(black)("L H"_2))xx(1color(red)cancel(color(black)("mol H"_2)))/(22.710color(red)cancel(color(black)("L H"_2)))xx(1color(red)cancel(color(black)("mol Ca")))/(1color(red)cancel(color(black)("mol H"_2)))xx(40.078"g Ca")/(1color(red)cancel(color(black)("mol Ca")))="27.7 g Ca"# (rounded to three significant figures)
Note: If your teacher is still using STP as #0^@"C"# and #"1 atm"#, substitute #"22.414 L/mol"# for #"22.710 L/mol"#.
The mass of #"Ca"# would be #"28.1 g Ca"#.