Question #8be0e
1 Answer
Boiling point:
Freezing point:
Explanation:
To solve this problem, you need to know the value of water's cryoscopic and ebullioscopic constants,
K_f = 1.853""^@"C kg mol"""^(-1) " "
K_b = 0.512""^@"C kg mol"""^(-1)
The two equations that you will use to get the boling point and freezing point on the solution are
DeltaT_f = i * K_f * b" " , where
and
DeltaT_b = 8 * K_b * b" " , where
The molality of the solution is defined as the number of moles of solute, in your case fructose, divided by the mass of the solvent, expressed in kilograms.
Use fructose's molar mass to determine the number of moles your solution contains
20color(red)(cancel(color(black)("g"))) * "1 mole"/(180.16color(red)(cancel(color(black)("g")))) = "0.111 moles fructose"
The molality of the solution will thus be
b = n_"fructose"/m_"water"
b = "0.111 moles"/(150 * 10^(-3)"kg") = 0.74"mol"/"kg"
The freezing-point depression will be
DeltaT_f = 1 * 1.853""^@"C" color(red)(cancel(color(black)("kg"))) color(red)(cancel(color(black)("mol"^(-1)))) * 0.74color(red)(cancel(color(black)("mol")))/color(red)(cancel(color(black)("kg"))) = 1.37""^@"C"
The freezing point of the solution,
DeltaT_f = T_f^@ - T_f implies T_f = T_f^@ - DeltaT_f
T_f = 0""^@"C" - 1.37""^@"C" = color(green)(-1.4""^@"C")
The boiling-point elevation will be
DeltaT_b = 1 * 0.512""^@"C" color(red)(cancel(color(black)("kg"))) color(red)(cancel(color(black)("mol"^(-1)))) * 0.74color(red)(cancel(color(black)("mol")))/color(red)(cancel(color(black)("kg"))) = 0.38""^@"C"
The boiling point of the solution,
DeltaT_b = T_b - T_b^@ implies T_b = DeltaT_b + T_b^@
T_b = 0.38""^@"C" + 100""^@"C" = color(green)(100.4""^@"C")