How do you simplify \frac { ( - 8) ^ { 4} \cdot 16^ { - 3} \cdot 35^ { 3} } { 14^ { 3} \cdot 50^ { 2} \cdot 24^ { - 2} }?

2 Answers
May 26, 2018

18/5 =3.6

Explanation:

((-8)^4*16^-3*35^3)/(14^3*50^2*24^-2

=(-8)^4*16^-3*35^3*14^-3*50^-2*24^2

=((-2)^3)^4*(2^4)^-3*5^3*7^3*2^-3*7^-3*2^-2*(5^2)^-2*3^2*(2^3)^2

= (-2)^12*2^-12*2^(-3-2+6)*3^2*5^(3-4)*7^(3-3)

=2^12*2^-12*2^1*3^2*5^-1*7^0

= (2*9*1)/5

=18/5

=3.6

Note:
1." "(-2)^12 = 2^12 since exponent is even
2." "7^0 = 1 .... by definition

May 26, 2018

18/5

Explanation:

\frac { ( - 8) ^ { 4} \cdot 16^ { - 3} \cdot 35^ { 3} } { 14^ { 3} \cdot 50^ { 2} \cdot 24^ { - 2} }

Write the bases as the product of their prime factors:

((-2^3)^4 * (2^4)^-3*(5xx7)^3)/((2xx7)^3*(2xx5^2)^2* (2^3xx3)^-2

Multiply the indices to remove the brackets.

=(2^12 * 2^-12 * 5^3 * 7^3)/(2^3 * 7^3 * 2^2 * 5^4 * 2^-6 * 3^-2)

Simplify by adding the indices of like bases

= (2^0 * 5^3 * 7^3)/(2^-1 * 3^-2 * 5^4* 7^3)" "larr (7^3/7^3 =1)

=(2 * 3^2)/5" "larr" " law: 1/x^-m = x^m

=18/5