How do you differentiate f(x)= (1 - sin^2x)/(1 - sinx)^2 using the quotient rule?

1 Answer
Apr 23, 2018

(2cosx)/(1-sinx)^2

Explanation:

First, factor the numerator.

(1-sinx)(1+sinx)

Then cancel a factor from the bottom.

((1-sinx)(1+sinx))/((1-sinx)(1-sinx))
(1+sinx)/(1-sinx)

We know the quotient rule:
(f'(x)g(x)-g'(x)f(x))/g(x)^2

So let's insert:
(cosx*(1-sinx)-(-cosx)*(1+sinx))/((1-sinx)^2)

We get in the numerator:
(cosx*(1-sinx)+cosx*(1+sinx))

(cosx(1-sinx+1+sinx))

(cosx(2))

Now in total:

(2cosx)/(1-sinx)^2

And it can be left this way. There is no more useful algebra to do. I double checked this answer.