How do you divide #(4x^3 + x^2 – 3x – 4)/((x + 8) )#?

1 Answer
Apr 17, 2018

#4x^2 - 31x + 245 - 1964/(x+8)#

Explanation:

Polynomial division is a lot like normal long division once you get the hang of it.

#color(white)( (x+8)/color(black)(x+8))color(white)(x)(4x^2 - 31x + 245 color(white)x color(red)( -1964/(x+8)))/(")"color(white)(x)4x^3 + color(white)(xx)x^2 - color(white)(xx)3x - color(white)(x)4 )#
#color(white)(- X X X) (-4x^3 - color(white)(x)32x^2 color(white)(xxxx))/(color(white)(xxxxx)-31x^2 - color(white)(x)3x)#
#color(white)(- X X X X X X X) (+31x^2 + 248x color(white)(xx))/(color(white)(xxxxxxx) 245x-4)#
#color(white)(- X X X X X X X X Xxxx) (-245x - 1960)/(color(white)(xxxxx) color(red)(-1964)#

#-1964# is a remainder, so it gets put in a fraction over our divisor, #x+8#.