How do you simplify #(5^4 times 5^7) / 5^8#? Algebra Exponents and Exponential Functions Exponential Properties Involving Quotients 1 Answer Ridinion K. Apr 15, 2018 #5^3# Explanation: Using indices law: #a^m * a^n = a^(m+n)# #a^m / a^n = a^(m-n)# So, #(5^4)*( 5^7 )= 5^(4+7) = 5^11# and #5^11 / 5^8 = 5^(11-8) = 5^3# Answer link Related questions What is the quotient of powers property? How do you simplify expressions using the quotient rule? What is the power of a quotient property? How do you evaluate the expression #(2^2/3^3)^3#? How do you simplify the expression #\frac{a^5b^4}{a^3b^2}#? How do you simplify #((a^3b^4)/(a^2b))^3# using the exponential properties? How do you simplify #\frac{(3ab)^2(4a^3b^4)^3}{(6a^2b)^4}#? Which exponential property do you use first to simplify #\frac{(2a^2bc^2)(6abc^3)}{4ab^2c}#? How do you simplify #(x^5y^8)/(x^4y^2)#? How do you simplify #[(2^3 *-3^2) / (2^4 * 3^-2)]^2#? See all questions in Exponential Properties Involving Quotients Impact of this question 3157 views around the world You can reuse this answer Creative Commons License