What is the equation of the tangent line of f(x)=cos^3x^2 f(x)=cos3x2 at x=0x=0?

1 Answer

Hence equation of tangent is y=1

Explanation:

Let
y=cos^3x^2y=cos3x2

Slope of the tangent is

dy/dx=3cos^2x^2(-sinx^2)(2x)dydx=3cos2x2(sinx2)(2x)

m=-6xcos^2x^2sinx^2m=6xcos2x2sinx2

at x=0

m=-6xx0xxcos^2 0^2sin0^2m=6×0×cos202sin02

m=0m=0

point of tangency is

y=cos^3x^2=cos^3 0^2=cos^3 0=(cos0)^2=1^2=1y=cos3x2=cos302=cos30=(cos0)2=12=1

Hence equation of tangent is y=1