How do you solve sec(x)-1=tan(x)sec(x)1=tan(x)?

2 Answers
Mar 6, 2018

x=2kpi,kinZx=2kπ,kZ

Explanation:

secx-1=tanxrArr1/cosx-1=sinx/cosxrArr1-cosx=sinxrArrcosx+sinx=1rArr1/sqrt(2)cosx+1/sqrt(2)sinx=1/sqrt(2)secx1=tanx1cosx1=sinxcosx1cosx=sinxcosx+sinx=112cosx+12sinx=12
rArrcosxcos(pi/4)+sinxsin(pi/4)=cos(pi/4)cosxcos(π4)+sinxsin(π4)=cos(π4)
rArrcos(x-pi/4)=cos(pi/4)cos(xπ4)=cos(π4)
x-pi/4=2kpi+-pi/4,kinZxπ4=2kπ±π4,kZ
x=2kpi+-pi/4+pi/4,kinZx=2kπ±π4+π4,kZ
x=2kpi+pi/4+pi/4,kinZorx=2kpi-pi/4+pi/4.kinZx=2kπ+π4+π4,kZorx=2kππ4+π4.kZ
color(red)(x=2kpi+pi/2,kinZorx=2kpi,kinZ)x=2kπ+π2,kZorx=2kπ,kZ
But, taking k=0,..etc.k=0,..etc.
x=2kpi+pi/2.kinZ=>x=pi/2x=2kπ+π2.kZx=π2, which does not satisfy
secx-1=tanxsecx1=tanx, as sec (pi/2) and tan(pi/2)sec(π2)andtan(π2) are undefined.
So, color(red)(x!=2kpi+pi/2,kinZrArrx=2kpi,kinZ)x2kπ+π2,kZx=2kπ,kZ

Mar 6, 2018

x = 2kpi , "where k any integer"x=2kπ,where k any integer

Explanation:

sec(x)−1=tan(x)sec(x)1=tan(x)

1/cosx −1=sinx/cosx1cosx1=sinxcosx

(1-sinx)/cosx =11sinxcosx=1

sinx + cosx = 1, "where" cosx ≠ 0sinx+cosx=1,wherecosx0

x = 2kpi , "where k any integer"x=2kπ,where k any integer