secx-1=tanxrArr1/cosx-1=sinx/cosxrArr1-cosx=sinxrArrcosx+sinx=1rArr1/sqrt(2)cosx+1/sqrt(2)sinx=1/sqrt(2)secx−1=tanx⇒1cosx−1=sinxcosx⇒1−cosx=sinx⇒cosx+sinx=1⇒1√2cosx+1√2sinx=1√2
rArrcosxcos(pi/4)+sinxsin(pi/4)=cos(pi/4)⇒cosxcos(π4)+sinxsin(π4)=cos(π4)
rArrcos(x-pi/4)=cos(pi/4)⇒cos(x−π4)=cos(π4)
x-pi/4=2kpi+-pi/4,kinZx−π4=2kπ±π4,k∈Z
x=2kpi+-pi/4+pi/4,kinZx=2kπ±π4+π4,k∈Z
x=2kpi+pi/4+pi/4,kinZorx=2kpi-pi/4+pi/4.kinZx=2kπ+π4+π4,k∈Zorx=2kπ−π4+π4.k∈Z
color(red)(x=2kpi+pi/2,kinZorx=2kpi,kinZ)x=2kπ+π2,k∈Zorx=2kπ,k∈Z
But, taking k=0,..etc.k=0,..etc.
x=2kpi+pi/2.kinZ=>x=pi/2x=2kπ+π2.k∈Z⇒x=π2, which does not satisfy
secx-1=tanxsecx−1=tanx, as sec (pi/2) and tan(pi/2)sec(π2)andtan(π2) are undefined.
So, color(red)(x!=2kpi+pi/2,kinZrArrx=2kpi,kinZ)x≠2kπ+π2,k∈Z⇒x=2kπ,k∈Z