Solve for x using properties of logarithms: log2(32)-log3(x)=log5(25)?

2 Answers
Feb 22, 2018

x=1

Explanation:

Since 25=3xxxxlog2(32)=5
and x52=25xxxxlog5(25)=2

log2(32)log3(x)=log5(25)
is equivalent to
5log3(x)=2

log3(x)=3
and
since 31=3
XXXlog3(x)=3xxxxx=1

Feb 22, 2018

x=27

Explanation:

log2(32)log3(x)=log5(25)

log2(25)log3(x)=log5(52)

5log2(2)log3(x)=2log5(5)

5log3(x)=2

log3(x)=3

Hence x=33=27