What is the distance between the following polar coordinates?: (8,(-23pi)/12), (5,(-3pi)/8) (8,23π12),(5,3π8)

1 Answer
Feb 13, 2018

d==8.863d==8.863

Explanation:

The rectangular coordinates of the first point are:
x=8cos((-23pi)/12); y=8sin((-23pi)/12)x=8cos(23π12);y=8sin(23π12)
x=7.727, y=2.071x=7.727,y=2.071
The rectangular coordinates of the first point are:
x=5cos((-3pi)/8); y=5sin((-3pi)/8)x=5cos(3π8);y=5sin(3π8)
x=1.913, y=-4.619x=1.913,y=4.619
Distance between the coordinates is given by:
d=sqrt((1.913-7.727)^2+(-4.619-2.071)^2)=8.863d=(1.9137.727)2+(4.6192.071)2=8.863