Note that we have several functions in y=x(lnx)12: there is the function f(x)=x, which multiplies the composite function g(x)=(lnx)12. g(x) is nothing more thant the composite function of h(x)=x12 and j(x)=ln(x). Therefore, to find the derivative of y, we will need to use the product and chain rule.
dydx=ddx[x(lnx)12];
dydx=ddx(x).(lnx)12+x.ddx[(lnx)12].
Since ddx(x)=1, then:
dydx=(lnx)12+x.ddx[(lnx)12].
Now, the derivative ddx[(lnx)12] is where we apply the chain rule. If we take u=ln(x), then:
ddx[(lnx)12]=ddu(u12).dudx;
ddx[(lnx)12]=12u−12.(1x).
Now we return to our original variable, x, since we know the relation between u and x:
ddx[(lnx)12]=12[ln(x)]−12.(1x).
Then:
dydx=(lnx)12+x.12[ln(x)]−12.(1x);
dydx=(lnx)12+12[ln(x)]−12.
If you want to, you can also rewrite this expression:
dydx=√ln(x)+12√ln(x).
dydx=2ln(x)+12√ln(x).