Question #fe9da

1 Answer
Jan 17, 2018

Note that we have several functions in y=x(lnx)12: there is the function f(x)=x, which multiplies the composite function g(x)=(lnx)12. g(x) is nothing more thant the composite function of h(x)=x12 and j(x)=ln(x). Therefore, to find the derivative of y, we will need to use the product and chain rule.

dydx=ddx[x(lnx)12];

dydx=ddx(x).(lnx)12+x.ddx[(lnx)12].

Since ddx(x)=1, then:

dydx=(lnx)12+x.ddx[(lnx)12].

Now, the derivative ddx[(lnx)12] is where we apply the chain rule. If we take u=ln(x), then:

ddx[(lnx)12]=ddu(u12).dudx;

ddx[(lnx)12]=12u12.(1x).

Now we return to our original variable, x, since we know the relation between u and x:

ddx[(lnx)12]=12[ln(x)]12.(1x).

Then:

dydx=(lnx)12+x.12[ln(x)]12.(1x);

dydx=(lnx)12+12[ln(x)]12.

If you want to, you can also rewrite this expression:

dydx=ln(x)+12ln(x).
dydx=2ln(x)+12ln(x).