How do you find the roots, real and imaginary, of y=-(x -4 )^2-12x+16 using the quadratic formula?

1 Answer
Dec 21, 2017

The two real roots are:

x_1\approx 18.24621\quad,quad x_2\approx 1.75379

Explanation:

First let’s simplify the first parenthetical term, -(x-4)^2, by distributing the negative sign and FOILing it.

-(x-4)^2

color(magenta)(\implies) (-x+4)(-x+4)

color(magenta)(\implies) x^2-4x-4x+16

color(magenta)(\implies) x^2-8x+16

Add that to the rest of the original expression:

color(red)(x^2)-color(blue)(8x)+color(green)(16)-color(blue)(12x)+color(green)(16)

color(magenta)(\implies) color(red)(x^2)-color(blue)(20x)+color(green)(32)

This is in standard form, ax^2+bx+c, so we can solve using the quadratic formula. Here,

  • a=1

  • b=20

  • c=32

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

color(magenta)(\implies)x=\frac{20\pm\sqrt{(-20)^2-4(1)(32)}}{2(10)}

color(magenta)(\implies)x=\frac{20\pm\sqrt{400-128}}{2}

color(magenta)(\implies)x=\frac{20\pm\sqrt{272}}{2}

color(magenta)(\implies)x=\frac{20\pm 4\sqrt{17}}{2}

color(magenta)(\implies) x=10\pm 2\sqrt{17}

color(magenta)(\therefore) x_1\approx 18.24621\quad,\quad x_2\approx 1.75379