How do you find the zeros, real and imaginary, of y=2x^2-5x-3 using the quadratic formula?

1 Answer
Nov 30, 2017

There are only 2 real solutions:

x=6\quad,\quad x=-1

Explanation:

First, we can calculate the discriminant to see how many real/imaginary answers there will be:

b^2-4ac

\rightarrow (-5)^2-4(1)(-3)

\rightarrow 25+24

\rightarrow 49

\therefore the equation will have 2 real answers. There are no imaginary solutions.

Now we can solve for those answers.


First set the RHS equal to 0:

2x^2-5x-3=0

Now we can just plug the following values into the quadratic formula:

a=2

b=-5

c=-3

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

\rightarrow x=\frac{5\pm\sqrt{(-5)^2-4(2)(-3)}}{2(2)}

\rightarrow x=\frac{5\pm\sqrt{25+24}}{2}

\rightarrow x=\frac{5\pm\sqrt{49}}{2}

\rightarrow x=\frac{5\pm7}{2}

\rightarrow x=\frac{5+7}{2}\quad,\quad x=\frac{5-7}{2}3

\rightarrow x=6\quad, \quad x=-1