Since the quadratic equation is given in standard form, we can find the vertex and roots using the vertex and quadratic formula.
Standard form is ax^2+bx+c. In this case:
a=2
b=8
c=5
The vertex formula for the x-coordinate is -\frac{b}{2a}
Plugging in yields:
-\frac{8}{2\cdot 2}
=-2
To find the y-coordinate, plug in the x-coordinate (-2) into the original quadratic equation, in place of x:
2x^2+8x+5
\Rightarrow 2(-2)^2+8(-2)+5
\Rightarrow 2(4)-16+5
\Rightarrow 8-16+5
\Rightarrow -3
Therefore, the vertex is (-2,-3)
Now, to find the x-intercepts, plug the corresponding a, b, and c values into the quadratic formula
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
x=\frac{-8\pm\sqrt{8^2-4(2)(5)}}{2(2)}
x=\frac{-8\pm\sqrt{64-40}}{4}
x=\frac{-8\pm\sqrt{24}}{4}
x=\frac{-8\pm 2\sqrt{6}}{4}
Splitting x up into the plus and minus values:
x=\frac{-8+2\sqrt{6}}{4},\qquad\qquad\qquad x=\frac{-8-2\sqrt{6}}{4}
x=-3.2247448713916,\qquad\qquad\qquadx=-0.77525512860841
Those are the xintercepts.
The y-intercept is simply (0,c), or (0,5) in this case.
Bada-bing, Bada-boom.