How do you find the vertex and the intercepts for y=2x^2 + 8x + 5?

1 Answer
Oct 21, 2017

Vertex: (-3,-2)

x-intercepts:

x=-3.2247448713916,\qquad\qquad\qquad x=-0.77525512860841

y-intercept: (0,5)

Explanation:

Since the quadratic equation is given in standard form, we can find the vertex and roots using the vertex and quadratic formula.

Standard form is ax^2+bx+c. In this case:

a=2

b=8

c=5

The vertex formula for the x-coordinate is -\frac{b}{2a}

Plugging in yields:

-\frac{8}{2\cdot 2}

=-2

To find the y-coordinate, plug in the x-coordinate (-2) into the original quadratic equation, in place of x:

2x^2+8x+5

\Rightarrow 2(-2)^2+8(-2)+5

\Rightarrow 2(4)-16+5

\Rightarrow 8-16+5

\Rightarrow -3

Therefore, the vertex is (-2,-3)


Now, to find the x-intercepts, plug the corresponding a, b, and c values into the quadratic formula

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

x=\frac{-8\pm\sqrt{8^2-4(2)(5)}}{2(2)}

x=\frac{-8\pm\sqrt{64-40}}{4}

x=\frac{-8\pm\sqrt{24}}{4}

x=\frac{-8\pm 2\sqrt{6}}{4}

Splitting x up into the plus and minus values:

x=\frac{-8+2\sqrt{6}}{4},\qquad\qquad\qquad x=\frac{-8-2\sqrt{6}}{4}

x=-3.2247448713916,\qquad\qquad\qquadx=-0.77525512860841

Those are the xintercepts.


The y-intercept is simply (0,c), or (0,5) in this case.

Bada-bing, Bada-boom.