How do you find the derivative of (x-3)/(2x+1)x−32x+1?
2 Answers
Oct 5, 2017
Explanation:
"differentiate using the "color(blue)"quotient rule"differentiate using the quotient rule
"given "f(x)=(g(x))/(h(x))" then"given f(x)=g(x)h(x) then
f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr" quotient rule"
g(x)=x-3rArrg'(x)=1
h(x)=2x+1rArrh'(x)=2
rArrf'(x)=((2x+1)-2(x-3))/(2x+1)^2
color(white)(rArrf'(x))=7/(2x+1)^2
Oct 5, 2017
Explanation:
Quotient rule:
In this function,
So plugging that in gets: