How do you differentiate f(x)=x24xxcotx+1 using the quotient rule?

1 Answer
Jul 21, 2017

dfdx=(2x4)(xcotx+1)+(xsin2θcotx)(x24x)(xcotx+1)2

Explanation:

dfdx=d(x24x)dx(xcotx+1)d(xcotx+1)dx(x24x)(xcotx+1)2=

(2x4)(xcotx+1)(xsin2θ+cotx)(x24x)(xcotx+1)2=

(2x4)(xcotx+1)+(xsin2θcotx)(x24x)(xcotx+1)2