How do you convert y=(x-2y)^2-2x^2y -2y^2 into a polar equation?

1 Answer
Jul 21, 2017

rcos^2theta-2rsin2theta+2rsin^2theta-2r^2cos^2thetasintheta-sintheta=0

Explanation:

Let;s expand this first :

y=(x-2y)^2-2x^2y-2y^2=

x^2-4xy+4y^2-2x^2y-2y^2=x^2-4xy+2y^2-2x^2y=>

y=x^2-4xy+2y^2-2x^2y

Now to swith to polar coordinates we do the following substitutions :

y=rsintheta
x=rcostheta

rsintheta=r^2cos^2theta-4r^2sinthetacostheta+2r^2sin^2theta-2r^3cos^2thetasintheta

=>sintheta=rcos^2theta-2rsin2theta+2rsin^2theta-2r^2cos^2thetasintheta=>

rcos^2theta-2rsin2theta+2rsin^2theta-2r^2cos^2thetasintheta-sintheta=0